
Supplementary Appendix

Venkat Chandrasekaran and Michael I. Jordan

Proof of Proposition 5

As with the proof of Proposition 4, we condition on z = z̃. Setting δ = x − x̃ and setting δ̂n(C) =
x̂n(C)|z=z̃ − x̃, we can rewrite the estimation problem [2] from the main paper as follows:

δ̂n(C) = arg min
δ∈Rp

1

2

∥∥∥(x∗ − x̃) + σ√
n
z̃− δ

∥∥∥2
ℓ2

s.t. δ ∈ C − x̃.

Letting R1 and R2 denote orthogonal subspaces that contain Q1 and Q2, i.e., Q1 ⊆ R1 and Q2 ⊆ R2, and

letting δ(1) = PR1(δ), δ
(2) = PR2(δ), δ̂

(1)

n (C) = PR1(δ̂n(C)), δ̂
(2)

n (C) = PR2(δ̂n(C)) denote the projections of

δ, δ̂n(C) onto R1, R2, we can rewrite the above reformulated optimization problem as:[
δ̂
(1)

n (C), δ̂
(2)

n (C)
]
= arg min

δ(1)∈Q1,δ(2)∈Q2

1

2

∥∥∥PR1

[
(x∗ − x̃) + σ√

n
z̃
]
− δ(1)

∥∥∥2
ℓ2

+
1

2

∥∥∥PR2

[
(x∗ − x̃) + σ√

n
z̃
]
− δ(2)

∥∥∥2
ℓ2
.

As the sets Q1, Q2 live in orthogonal subspaces, the two variables δ(1), δ(2) in this problem can be optimized

separately. Consequently, we have that ∥δ̂
(2)

n (C)∥ℓ2 ≤ α and that

∥δ̂
(1)

n (C)∥ℓ2 ≤ sup
δ̄∈cone(Q1)∩Bp

ℓ2

⟨δ̄, σ√
n
z̃+ (x∗ − x̃)⟩.

This bound can be established following the same sequence of steps as in the proof of Proposition 4. Com-

bining the two bounds on δ̂
(1)

n (C) and δ̂
(2)

n (C), one can then check that

∥δ̂
(1)

n (C)∥2ℓ2 + ∥δ̂
(2)

n (C)∥2ℓ2 ≤ 2
[
σ2

n g(cone(Q1) ∩Bpℓ2) + ∥x∗ − x̃∥2ℓ2
]

+ α2.

To obtain a bound on ∥x̂n(C)|z=z̃ − x∗∥2ℓ2 we note that

∥x̂n(C)|z=z̃ − x∗∥2ℓ2 ≤ 2
[
∥x̂n(C)|z=z̃ − x̃∥2ℓ2 + ∥x∗ − x̃∥2ℓ2

]
≤ 2∥δ̂

(1)

n (C)∥2ℓ2 + 2∥δ̂
(2)

n (C)∥2ℓ2 + 2∥x∗ − x̃∥2ℓ2 .

Taking expectations concludes the proof. �

Proof of Proposition 9

The main steps of this proof follow the steps of a similar result in [1], with the principal difference being
that we wish to bound Gaussian squared-complexity rather than Gaussian complexity. A central theme in
this proof is the appeal to Gaussian isoperimetry. Let Sp−1 denote the sphere in p dimensions. Then in
bounding the expected squared-distance to the dual cone K∗ with K∗ ∩ Sp−1 having a volume of µ, we need
only consider the extremal case of a spherical cap in Sp−1 having a volume of µ. The manner in which this
is made precise will become clear in the proof. Before proceeding with the main proof, we state and derive
a result on the solid angle subtended by a spherical cap in Sp−1 to which we will need to appeal repeatedly:
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Lemma 2 Let ψ(µ) denote the solid angle subtended by a spherical cap in Sp−1 with volume µ ∈
(
1
4 exp{−

p
20},

1
4e2

)
. Then

ψ(µ) ≥ π

2

1−

√√√√2 log
(

1
4µ

)
p− 1

 .

Proof of Lemma 2: Consider the following definition of a spherical cap, parametrized by height h:

J = {a ∈ Sp−1 | a1 ≥ h}.

Here a1 denotes the first coordinate of a ∈ Rp. Given a spherical cap of height h ∈ [0, 1], the solid angle ψ
is given by:

ψ =
π

2
− sin−1(h). (10)

We can thus obtain bounds on the solid angle of a spherical cap via bounds on its height. The following
result from [2] relates the volume of a spherical cap to its height:

Lemma 3 [2] For 2√
p ≤ h ≤ 1 the volume µ̃(p, h) of a spherical cap of height h in Sp−1 is bounded as

1

10h
√
p
(1− h2)

p−1
2 ≤ µ̃(p, h) ≤ 1

2h
√
p
(1− h2)

p−1
2 .

Continuing with the proof of Lemma 2, note that for 2√
p ≤ h ≤ 1

1

2h
√
p
(1− h2)

p−1
2 ≤ 1

4
(1− h2)

p−1
2 ≤ 1

4
exp

(
−p−1

2 h2
)
.

Choosing h =

√
2 log

(
1
4µ

)
p−1 we have 2√

p ≤ h ≤ 1 based on the assumption µ ∈
(
1
4 exp{−p/20},

1
4e2

)
. Conse-

quently, we can apply Lemma 3 with this value of h combined with (10) to conclude that

µ̃

p,
√√√√2 log

(
1
4µ

)
p− 1

 ≤ µ.

Hence the solid angle ψ

(
µ̃

(
p,

√
2 log

(
1
4µ

)
p−1

))
is less than the solid angle ψ(µ). Consequently, we use (10)

to conclude that

ψ(µ) ≥ π

2
− sin−1


√√√√2 log

(
1
4µ

)
p− 1

 .

Using the bound sin−1(h) ≤ π
2h, we obtain the desired bound. �

Proof of Proposition 9: We bound the Gaussian squared-complexity of K by bounding the expected
squared-distance to the polar cone K∗. Let µ̄(U ; t) for U ⊆ Sp−1 and t > 0 denote the volume of the set of
points in Sp−1 that are within a Euclidean distance of at most t from U (recall that the volume of this set
is equivalent to the measure of the set with respect to the normalized Haar measure on Sp−1). We have the
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following sequence of relations by appealing to the independence of the direction g/∥g∥ℓ2 and of the length
∥g∥ℓ2 of a standard normal vector g:

E[dist(g,K∗)2] = E[∥g∥2ℓ2dist(g/∥g∥ℓ2 ,K
∗)2]

= p E[dist(g/∥g∥ℓ2 ,K∗)2]

≤ p E[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1)2]

= p

∫ ∞

0

P[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1)2 > t]dt

= p

∫ ∞

0

P[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1) >
√
t]dt

= 2p

∫ ∞

0

sP[dist(g/∥g∥ℓ2 ,K∗ ∩ Sp−1) > s]ds

= 2p

∫ ∞

0

s[1− µ̄(K∗ ∩ Sp−1; s)]ds.

Here the third equality follows based on the integral version of the expected value. Let V ⊆ Sp−1 denote a
spherical cap with the same volume µ as K∗ ∩ Sp−1. Then we have by spherical isoperimetry that µ̄(V ; s) ≥
µ̄(K∗ ∩ Sp−1; s) for all s ≥ 0 [3]. Thus

E[dist(g,K∗)2] ≤ 2p

∫ ∞

0

s[1− µ̄(V ; s)]ds. (11)

From here onward, we focus exclusively on bounding the integral.
Let τ(ψ) denote the volume of a spherical cap subtending a solid angle of ψ radians. Recall that ψ is a

quantity between 0 and π. As in Lemma 2 let ψ(µ) denote the solid angle of a spherical cone subtending a
solid angle of µ. Since the Euclidean distance between points on a sphere is always smaller than the geodesic
distance, we have that µ̄(V ; s) ≥ τ(ψ(µ) + s). Further, we have the following explicit formula for τ(ψ) [4]:

τ(ψ) = ω−1
p

∫ ψ

0

sinp−1(v)dv,

where ωp =
∫ π
0
sinp−1(v)dv is the normalization constant. Combining these latter two observations, we can

bound the integral in (11) as:∫ ∞

0

s[1− µ̄(V ; s)]ds ≤
∫ ∞

0

s[1− τ(ψ(µ) + s)]ds

=

∫ π−ψ(µ)

0

s[1− τ(ψ(µ) + s)]ds

=
(π − ψ(µ))2

2
−
∫ π−ψ(µ)

0

sτ(ψ(µ) + s)ds

=
(π − ψ(µ))2

2
− ω−1

p

∫ π−ψ(µ)

0

∫ ψ(µ)+s

0

s sinp−1(v)dvds
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Next we change the order of integration to obtain:∫ ∞

0

s[1− µ̄(V ; s)]ds ≤ (π − ψ(µ))2

2
− ω−1

p

∫ π

0

∫ π−ψ(µ)

max{v−ψ(µ),0}
sinp−1(v)sdsdv

=
(π − ψ(µ))2

2
− ω−1

p

∫ π

0

1

2

[
(π − ψ(µ))2 − (max{v − ψ(µ), 0})2

]
sinp−1(v)dv

=
ω−1
p

2

∫ π

0

(max{v − ψ(µ), 0})2 sinp−1(v)dv

=
ω−1
p

2

∫ π

ψ(µ)

(v − ψ(µ))2 sinp−1(v)dv.

We now appeal to the inequalities ω−1
p ≤

√
p− 1/2 and sin(x) ≤ exp(−(x− π

2 )
2/2) for x ∈ [0, π] to obtain∫ ∞

0

s[1− µ̄(V ; s)]ds ≤
√
p− 1

2

∫ π

ψ(µ)

(v − ψ(µ))2 exp
[
−p−1

2 (v − π
2 )

2
]
dv.

Performing a change of variables with a =
√
p− 1(v − π

2 ), we have∫ ∞

0

s[1− µ̄(V ; s)]ds ≤ 1

2

∫ √
p−1π/2

√
p−1(ψ(µ)−π/2)

( a√
p−1

+ (π2 − ψ(µ)))2 exp[−a2

2 ]da

=
1

2

∫ √
p−1π/2

√
p−1(ψ(µ)−π/2)

[
a2

p−1 + (π2 − ψ(µ))2 + 2a√
p−1

(π2 − ψ(µ))
]
exp[−a2

2 ]da

≤ 1

2

[∫ ∞

−∞

a2

p−1 exp[−
a2

2 ]da+

∫ ∞

−∞
(π2 − ψ(µ))2 exp[−a2

2 ]da+

∫ ∞

0

2a√
p−1

(π2 − ψ(µ)) exp[−a2

2 ]da

]
=

1

2

[√
2π

p−1 +
√
2π(π2 − ψ(µ))2 + 2√

p−1
(π2 − ψ(µ)) · (− exp[−a2

2 ])|∞0
]

=
1

2

[√
2π

p−1 +
√
2π(π2 − ψ(µ))2 + 2√

p−1
(π2 − ψ(µ))

]
Here the inequality was obtained by suitably changing the limits of integration. We now employ Lemma 2
to obtain the final bound:

g(K ∩Bpℓ2) ≤ p

√
2π

p−1 +
√
2π

(
π
2

√
2 log

(
1
4µ

)
p−1

)2

+ 2√
p−1

(
π
2

√
2 log

(
1
4µ

)
p−1

)
= p

√
2π

p−1

[
1 + π log

(
1
4µ

)
+
√
π

√
log
(

1
4µ

)]
≤ 20 log

(
1
4µ

)
.

Here the final bound holds because µ < 1/4e2 and p ≥ 12. �
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